Deriving the nonconcatenative preference in Dinka*

Coppe van Urk and Adam Chong Queen Mary University of London

NELS 53, Göttingen, January 14

- Western Nilotic languages have been cited as a challenge for concatenative approaches to morphology, because of a preference for non-concatenative processes (e.g. Aronoff and Fudeman 2011:54; Inkelas 2014:72; Arkadiev and Klamer 2018:450).
- In Dinka, many inflected forms are marked only by changes to the root vowel and lengthening, as illustrated for the verb *mîit* 'pull':

Table 1. Forms of *mîit* 'pull' marked only by non-concatenative morphology.

	Simple	CF	СР	APPL	AP.APPL	AP
UNM	mìit	mîiit	mìiit	mîit	mîiit	mìit
NF	mîiit	mjêeet	mjèeet	mjệet	mjệeet	míiit
NTS	míiit	míiit	míiit	míit	míiit	míiit
1sg	mjèɛɛt	mjêɛɛt	mjèeet	mjệet	mjĝeet	mjèeet
2sg	mîit		míiit			míit
3sg	mìiit	mîiit	mìiit	mîit	mîiit	mìiit
PASS	mîit					

This talk: We develop a concatenative view of Dinka morphology, in which these changes are taken to reflect -V affixes that integrate into the root (cf. Trommer 2011, 2015).

- ▷ We demonstrate that licit -V suffixes in Dinka show vowel reduction and propose that -V suffixes incorporate into the root to escape a ban on vowel contrast in final position.
- ▷ This proposal explains the strong correlation between grade changes and lengthening across paradigms in verbal and nominal morphology and provides an explanation of an apparent exception in -CV affixes.

 \Rightarrow The apparent preference for non-concatenative morphology reflects surface conditions on the wellformedness of suffixes. As a result, Dinka morphology in fact provides evidence for an approach in which non-concatenative expression may be determined by the phonology.

1 Non-concatenative morphology in Dinka

1.1 Monosyllabicity in Dinka roots

Dinka roots are generally monosyllabic with an obligatory onset and coda, as illustrated with some nouns and verbs in Luanyjang Dinka (1a-h):

(1)		Noun	Meaning		Verb	Meaning
	a.	jòom	'wind'	e.	máaan	'hate.nf'
	b.	kít	'color'	f.	kóoot	'care.for.nf'
	c.	pjèen	'viper'	g.	kw <u>ä</u> at	'wrap.nf'
	d.	gwèɛl	'collar bone'	h.	těet	'pick.nf'
	(Rem	ijsen and	Ladd 2008:180,	186, Ren	nijsen an	d Manyang 2009:115,119)

 \Rightarrow Andersen (1993:2) and Remijsen and Manyang (2009:114) provide the following template for the surface form of Dinka nouns and verbs in the Agar and Luanyjang dialects, respectively:

(2) Surface template for Dinka nouns and verbs: C (w) (j) V (V) (V) C

Note: The *underlying* form of roots is more restricted and maximally permits a long vowel and one glide (Andersen 1993, 2014; Ladd and Blum 2021).

Length, voice, and tone in Dinka roots

▷ Dinka vowels display a ternary contrast in length (Remijsen and Gilley 2008), between short, long, and overlong vowels. Some near-minimal triplets from Luanyjang are in (3):¹

(3)	Short		Long		Overlong	ş
	láŋ	'k.o. berries	làaŋ	'k.o. berry'	lăaaŋ	'slave'
	kít	'color'	kîit	'colors'	kîiit	'cloth bag'
	cól	'mouse'	cŏol	'charcoal'	còool	'charcoal.pl

- ▷ Most Dinka dialects distinguish three or four tones, high /ó/, low /ò/, falling /ô/, and sometimes also rising /ŏ/. Agar Dinka has three tones, while Luanyjang Dinka has all four.
- ▷ Finally, vowels show a binary contrast between modal/creaky voice (unmarked) and breathy voice / ⁰/₂, in all vowels except u.²

1.2 Vowel fronting and lowering

The most common expression of non-concatenative morphology in Dinka involves two processes of **vowel fronting and vowel lowering**.

^{*}Our thanks to Matthew Baerman, Mirella Blum, Irina Monich, Zhouyi Sun and audiences for talks at Leipzig and UCL for discussion. Email: c.vanurk@qmul.ac.uk, a.chong@qmul.ac.uk

¹Luanyjang examples are taken from the Remijsen (2013) corpus of noun pairs, where a source is not specifically indicated.

²We will follow Andersen and mark voice and tone only on the first vowel.

Andersen (1993) describes fronting and lowering in terms of three distinct vowel "grades":

Table 2. Dinka vowel grades.

(

	Cr	eaky				Bre	eathy	y			
Root vowel (Grade 1)	i	e	a	э	0	i	ë	a	ö	ö	ų
Fronting (Grade 2)	i	e	ε	э	0	i	ë	ä	ö	ö	ų
Lowering (Grade 3)	jε	ε	а	а	wo	je	ä	a	a	ö	WQ

- ▷ Grade 1 describes the underlying vowel in the root.³
- \triangleright Vowel fronting (Grade 2): A number of different inflectional and derivational categories involve vowel fronting, primarily of the central vowel *a*⁴.

(4)	Underlying form	3SG	Non-topical subject	Meaning
	lêer	lèeer	léeer	'roll'
	ŋáan	ŋὲɛɛɲ	ກູຮ໌ຮຽກ	'open'
	côol	còsol	cóool	'call'
	(Agar Dinka; Anders	en 1993:	20)	

Vowel lowering (Grade 3): Other morphological categories systematically involve vowel lowering and breaking (of peripheral vowels), except when the root vowel is already low:

5)	Underlying form	1SG	2PL	Meaning
	pîk	pjèek	pjék-kà	'push'
	bôk	bàok	bźk-kà	'throw at'
	lât	làat	lát-kà	'insult'
	(Agar Dinka; Anders	en 1993:	11-12)	

 \Rightarrow Key point: A vowel grade does not represent a single morpheme, but describes recurring processes that are used by a variety of morphological categories to signal inflection.

2 Constraints on Dinka suffixes

Why would a language prefer non-concatenative morphology?

- The form of affixes is significantly restricted. Suffixes are limited to a -(C)V template (cf. Reid 2020:52 on Nuer), and vocalic suffixes always take the shape of the reduced vowel g.
- ▷ We propose that Dinka places a constraint on vowel contrast word-finally, so that a -V suffix is preferentially integrated into the root. Non-concatenative morphology then is a result of surface phonological constraints.

2.1 Restrictions on suffixes in Dinka

What do suffixes look like in Dinka?⁵

1. Verbal suffixes. Verbs take a number of suffixes, which either have the form -V or -CV. All vocalic suffixes are -*e*, whereas the CV suffixes are -*kg/ku/kg*.

Table 3. Agar Dinka verbal paradigms by suffix.

	Simple	CF	СР	APPL	AP.APPL	AP
UNM						
NF						
NTS						
1sg						
2sg		-é		-é	-é	-é
3sg						
1pl	-kù/kú	-kù	-kù	-kù	-kù	-kù
2pl	-kà/ká	-kà	-kà	-kà	-kà	-kà
3pl	-k <u>è</u> /ké	-kè	-kè	-kè	-kè	-kè
PASS		-è	-è	-è	-è	_
PASS:CT	-è	-è	-è	-è	-è	-è

(NF = non-finite, NTS = non-topical subject, CT = circumstantial topic, CF = centrifugal, CP = centripetal, APPL = applicative, AP.APPL = antipassive applicative)

2. Nominal construct state suffixes. There are two -C suffixes that mark modified nouns. The suffix -*n* usually triggers nasal replacement, but may surface overtly with some nouns:

a. dòok 'boy'	
b. $d\hat{p}_{2}$ - η dà	
'another boy'	(Agar Dinka; Andersen 2020:275,277)

 \Rightarrow Dinka places significant restrictions on suffixes:

- > Optional onset: Unlike roots, suffixes may surface without an onset.
- > No length: Unlike roots, suffixes do not display long or overlong vowels.
- ▷ No coda: Unlike roots, suffixes do not surface with a coda.
- ▷ Little stacking: Suffixes display little stacking (though the plural clitics can be decomposed into a -C and -V suffix).

A -CV template:

(6)

Suffixes are restricted to the form -CV maximally (see also Appendix).

³This vowel is most frequent and surfaces in unmarked forms (see Andersen 1993, 2017).

⁴With centrifugal verbs and some antipassives, Grade 2 optionally fronts σ to ε (Andersen 2017:sec. 3.3).

⁵We focus on suffixes, since non-concatenative morphology is oriented to the final syllable (as evident in polysyllabic nouns, for example).

2.2 Vowel grades as -V suffixes

Key observation:

Dinka permits few -V suffixes. Those that do surface have the form -e.

- ▷ The suffix e marks the passive, passive circumstantial topic, and 2nd person singular. No other vowel suffixes occur (though CV suffixes may have different vowels, see sec. 3.3).
- \triangleright There is evidence that <u>e</u> is the underspecified vowel in Dinka:
 - Remijsen and Gilley (2008:p. 335) note that short *e* (breathy or creaky) is "appropriately transcribed [ə] in many of its realizations".
 - Andersen (2007:fn. 20) points out that much of the reduced functional vocabulary ends in e, suggesting **vowel reduction**. Examples include the preposition $\frac{\dot{e}}{n\dot{e}}$, the negative auxiliary $c\dot{e}$, and some complementizers (e.g. $k\dot{e}$ 'then', \dot{e} 'while').
 - In the paradigms of the perfect auxiliary *cé* and future auxiliary *bé*, short forms surface with *e*, alternating with full vowels in long forms.

Proposal:

The prevalence of -*e* reflects a pressure to reduce vowel contrast in word-final position. Dinka vowel grades reflect -V affixes that undergo metathesis **to escape vowel reduction**.

Fronting (Grade 2): We posit a front vowel suffix -*i* for Grade 2 (or possibly -ε), since this grade triggers fronting. In addition, this grade likely has its origins in a front vowel. See the cognates of 3rd person singular:

7)	Form	Gloss	Language
	?àm-È	eat-3sg	Surkum (Andersen 2014:239)
	ríiŋ -é	run-3sg	Nuer (Reid 2020:102)
	ā-géer- ē	pst-build-3sg	Anywa (Reh 1996:194)

 \triangleright Lowering (Grade 3): We identify Grade 3 with the low vowel -*a*, since this grade triggers vowel lowering across the board. The cognate of Grade 3 inflection is also often a low vowel, such as in the 1st person singular:

(8)	Form	Gloss	Language
	?àm- à	eat-1sg	Surkum (Andersen 2014:239)
	lēap-á	open-1sg	Nuer (Reid 2020:103)
	ā-géer- ā	р s т-build-1sg	Anywa (Reh 1996:194)

Another piece of evidence for this proposal is that auxiliaries with a reduced vowel (the perfect $c\dot{g}$ and future $b\dot{g}$) surface with these vowels in Grade 2 and Grade 3 contexts, respectively:

Table 4. Paradigm of perfect auxiliary.⁶

	Grade in lexical verbs	Perfect auxiliary
UNM		cé
NTS	2	cíi
1sg	3	cà
2sg	(3)	cá
3sg	2	cè
1pl		cùuk
2pl	3	câak
3pl		cìik
PASS	(2)	cîi
PASS:CT	2	cîin-è

(NF = non-finite, NTS = non-topical subject, CT = circumstantial topic)

3 Vowel grades as metathesis

3.1 Prominence reduction drives metathesis

What constraints drive vowel reduction?

- Crosswhite (2001, 2004), based on a crosslinguistic survey on vowel reduction, proposes that vowel reduction is driven in some languages by what she calls "prominence reduction", a pressure to neutralize contrast in less prominent positions.
- ▷ We suggest that the word-final position is a less prominent position in Dinka. We adopt a constraint that **bans a mora word-finally**:
 - (9) $*\mu$ #: Assign a violation mark for a word-final mora.
- ▷ We propose that reduction to the default vowel <u>e</u> occurs because <u>e</u> can be a non-moraic vowel in Dinka (see also Crosswhite 2001 on schwa). As a result, <u>e</u> will not violate (9).

What happens when a root takes a suffix with a moraic vowel (e.g. -*i* or -*a*)?

For vocalic affixes with moraic vowels, (9) drives incorporation into the root if faithfulness constraints preventing vowel reduction or deletion outrank constraints blocking metathesis (MAXµ >> LINEARITY).

 $^{^{6}}$ Grades in parentheses indicate grades found in derived paradigms. The 2sg and PAss exceptionally do not show their grade in the simple transitive paradigm.

 \triangleright We illustrate with a tableau in (10) for Grade 2, the 3rd person singular of *mîit* 'pull'. As motivated above, the Grade 2 suffix is -*i*.

(10) **Tableau for Grade 2 3SG suffix.**

	Input: [mîit+ì _{3SG}]	ΜΑΧμ	*µ#	Linearity
ß	a. mìiit			*
	b. mìit	*!		
	c. mîit-ì		*!	
	d. mîit-è	*!		

▷ (We model the fronting and lowering effects as the outcome of assimilation under vowel coalescence, see also Zaleska 2020. Details omitted for time.)

3.2 Grade changes imply lengthening in verbal paradigms

Changes in vowel grade **strongly correlate with lengthening**. We present the distribution of vowel grade and length in Agar Dinka for five verbal paradigms (Andersen 1992, 1993, 2017):

Table 5. Agar Dinka paradigms by grade.

	Simple	CF	ČР	APPL	APPL.AP
UNM		2	2	2	2
NF		3	3	3	3
NTS	2	2	2	2	2
1sg	3	3	3	3	3
2sg		3	2	3	3
3sg	2	2	2	2	2
1pl		2	2	2	2
2pl	3	3	3	3	3
3pl		2	2	2	2
PASS		2	2	2	2
PASS:CT	2	2	2	2	2

- This table is laid out according to Andersen's division between "derivational" morphology (columns) and "inflectional" morphology (rows).
- ▷ This division is useful for displaying paradigms, but likely about attachment height rather than a difference in type of morphology.

Table 6. Agar Dinka paradigms by length.

	Simple	CF	ČР	APPL	APPL.AP
UNM		-μ	-μ	-μ _Π	-μ
NF	-μ	-μ	-μ	$-\mu_{II}$	-μ
NTS	-μ	-μ	-μ	-μ _{II}	-μ
1sg	-μ	-μ	-μ	-μ _{II}	-μ
2sg		-μ	-μ	-μ _{II}	-μ
3sg	-μ	-μ	-μ	-μ _Π	-μ
1pl		-μ	-μ	-μ _{II}	-μ
2pl		-μ	-μ	$-\mu_{II}$	-μ
3pl		-μ	-μ	-μ _Π	-μ
PASS		-μ	-μ	-μ _{II}	-μ
PASS:CT	-μ	-μ	-μ	$-\mu_{II}$	-μ

(NF = non-finite, NTS = non-topical subject, CT = circumstantial topic, CF = centrifugal, CP = centripetal, APPL = applicative, APPL.AP = applicative antipassive, $-\mu$ = lengthening of the root by one mora, $-\mu_{II}$ = lengthening of the root up to a bimoraic limit)

 \Rightarrow In accordance with our view, Grade 2 and Grade 3 morphological categories reliably lengthen roots by **one degree of length** across verbal and nominal paradigms (Andersen 1993, 2017; Ladd and Blum 2021; Van Urk and Sun 2021).

3.3 The lack of vowel reduction in -CV suffixes

Consider verbal paradigms for the simple transitive:

	Grade	CVC/F	CVC/L	CVVC/F	CVVC/H
UNM		CÙC	CÙC	CÙVC	CÙVC
NF		CŶVC	CÙVC	CŶVVC	CÝVVC
NTS	2	CÝVC	CÝVC	CÝVVC	CÝVVC
1sg	3	CÙVC	CÙVC	CÙVVC	CÙVVC
2sg		CÙC	CÙC	CŶVC	CÝVC
3sg	2	CÙVC	CÙVC	CÙVVC	CÙVVC
1pl		CÝC-kù	CÝC-kù	CÙVC-kײ	C ÙVC-k ײ
2pl	3	CÝC-kà	CÝC-kà	CÙVC-ká	CÙVC-kậ
3pl		CÝC-kè	CÝC-k <u>è</u>	CÙVC-k <u>é</u>	C ÙVC-k ế
PASS		CÝC	CÝC	CŶVC	CÝVC
PASS:CT	2	CŶVC-è	CŶVC-è	CŶVVC-è	CŶVVC-è

Table 7. Verbal paradigms of simple transitive by verb class.⁷

(NF = non-finite, NTS = non-topical subject, CT = circumstantial topic)

⁷There are four root types, which we follow Andersen (1993) in labeling according to the length and tone displayed in the non-finite form.

Observation:

There is no obvious restriction on vowels in the plural -CV suffixes (e.g. 2PL -kg and 1PL -kg).

- ▷ Section 2 posits the ranking $M_{AX\mu} >> *\mu\#$. The effect of the constraint favoring reduction only emerges because of the low ranking of LINEARITY.
- ▷ This set-up predicts that, if **metathesis is impossible**, then we should not see any reduction. We suggest that, in -CV suffixes, the initial consonant **protects** the vowel from integration.
- ▷ We posit a ban on **non-local metathesis**, enforced by Carpenter's (2002) I-ADJACENCY, in addition to high-ranking constraints blocking complex codas and consonant deletion.⁸ Since reduction is blocked by $MAx\mu >> *\mu\#$, the vowel surfaces faithfully:

	Input:		*Complex				
	[côəl+kú _{1PL}]	MaxC	Coda	I-ADJ	ΜΑΧμ	*µ#	Linearity
62	a. còɔl-kú					*	
	b. còssl	*!					*
	c. còsslk		*!	**			**
	d. còol-ké				*!		
	d. còsəl-ké			*!*			**

 \Rightarrow In accordance with this account, there is **no lengthening before -CV suffixes**. As evident in Table 7, short roots remain short and long roots remain long.

Independent evidence for a preference for local metathesis

- ▷ One piece of support for the idea that Dinka bans non-local metathesis comes from auxiliaries that **lack a coda consonant**, such as the perfect *cé* and future *bé*.
- ▷ Precisely with these auxiliaries, the vowels in plural -CV suffixes do undergo metathesis, because metathesis is now local (only the onset C intervenes):

(11)		Plural suffix	Perfect auxiliary
	1pl	-kù	cùuk
	2pl	-kà	câak
	3pl	-kệ	cìik

⁸We may also want to block metathesis within the -CV suffix, to rule out the candidate $c\dot{a}al$. But note that codas are generally banned in affixes in any case, so the impossibility of this repair may simply reflect a NoCODA constraint (see Appendix for more detail).

Concluding remarks

- ▷ We have argued that the prevalence of non-concatenative inflection in Dinka ultimately derives from surface phonological constraints on permissible suffixes.
- ▷ Dinka morphology in fact **provides evidence that affixation is underlyingly concatenative**, since such a view posits a direct relationship between the wellformedness of suffixation and non-concatenative processes.

Across Western Nilotic

We're currently working on extending this view across Western Nilotic systems, focusing on Shilluk and Nuer. A number of observations that we think are promising:

- ▷ In Shilluk, all affixes are limited to [-ATR] vowels. Instead of process of lowering and fronting, several morphological categories in Shilluk shift the root vowel to [+ATR].
- ▷ In Dinka/Nuer, no contrast in creaky/breathy voice is found in suffix vowels. In Dinka, all suffix vowels are breathy. In Nuer, voice quality is strictly determined by [ATR] value in suffixes. Both languages shift the root vowel to breathy in a number of paradigms.
- ▷ In Shilluk, almost all suffixes contain short vowels. All lengthening lengthens the root to overlong (i.e. by two degrees of length if possible).

References

Andersen, Torben. 1992. Morphological stratification in Dinka: On the alternations of voice quality, vowel length, and tone in the morphology of transitive verbal roots in a monosyllabic language. *Studies in African Linguistics* 23:1–64.

Andersen, Torben. 1993. Vowel quality alternation in Dinka verb inflection. Phonology 10:1-42.

- Andersen, Torben. 2007. Auxiliary verbs in Dinka. Studies in Language 31:89-116.
- Andersen, Torben. 2014. Number in Dinka. In *Number–constructions and semantics: Case studies from Africa, Amazonia, India and Oceania*, ed. by Anne Storch and Gerrit J. Dimmendaal, 221–264. Amsterdam & Philadelphia: John Benjamins.
- Andersen, Torben. 2017. Vowel quality alternation in Dinka verb derivation: The Agar variety. *Journal of African Languages and Linguistics* 38:1–50.
- Andersen, Torben. 2020. Multiple adnominal modification in Dinka: Chaining construct states. *Journal of African Languages and Linguistics* 49:273–304.
- Arkadiev, Peter, and Marian Klamer. 2018. Morphological theory and typology. In *The Oxford handbook of morphological theory*, ed. by Jenny Audring and Francesca Masini, 435–454. Oxford: Oxford University Press.
- Aronoff, Mark, and Kirsten Fudeman. 2011. What is morphology?. Oxford: Wiley-Blackwell.
- Carpenter, Angela. 2002. Noncontiguous metathesis and ADJACENCY. University of Massachusetts Occasional Papers in Linguistics 28.

Crosswhite, Katherine. 2001. Vowel reduction in Optimality Theory. New York: Routledge.

- Crosswhite, Katherine. 2004. Vowel reduction. In *Phonetically based phonology*, ed. by Bruce Hayes, Robert Kirchner, and Donca Steriade, 191–231. Cambridge: Cambridge University Press.
- Flack, Kathryn. 2007. Templatic morphology and indexed markedness constraints. *Linguistic Inquiry* 38:749–758.
- Gafos, Diamandis. 1998. Eliminating long-distance consonantal spreading. *Natural Language & Linguistic Theory* 16:223–278.
- Inkelas, Sharon. 2014. *The interplay of morphology and phonology*. Oxford: Oxford University Press.
- Ketner, Katherine. 2006. Size restrictions in Prosodic Morphology. Doctoral dissertation, University of Cambridge.
- de Lacy, Paul. 2003. Maximal words and the Maori passive. In *Proceedings of the Austronesian Formal Linguistics Association VIII*, ed. by Norvin Richards, 20–39. Cambridge, MA: MIT Working Papers in Linguistics.
- Ladd, D. Robert, and Mirella Blum. 2021. On the systematic nature of Dinka number morphology. *Journal of African Languages and Linguistics* 42:223–252.
- McCarthy, John, and Alan Prince. 1990. Prosodic Morphology and templatic morphology. In *Perspectives on Arabic Linguistics II: Papers from the Second Annual Symposium on Arabic Linguistics*, ed. by Mushira Eid and John McCarthy, 1–51. Amsterdam: John Benjamins.
- Reh, Mechthild. 1996. *Anywa language: Description and internal reconstructions*. Köln: Rüdiger Köppe Verlag.
- Reid, Tatiana. 2020. The phonology and morphology of the Nuer verb. Doctoral dissertation, University of Surrey.
- Remijsen, Bert. 2013. Dinka_LuanyjangDialect_Jan-May2007_controlled_NounsSingularAndPural. Dataset, University of Edinburgh DataShare, https://doi.org/10.7488/ds/141.
- Remijsen, Bert, and Leoma Gilley. 2008. Why are three-level vowel length systems so rare? Insights from Dinka (Luanyjang dialect). *Journal of Phonetics* 36:318–344.
- Remijsen, Bert, and D. Robert Ladd. 2008. The tone system of the Luanyjang dialect of Dinka. *Journal of African Languages and Linguistics* 29:173–213.
- Remijsen, Bert, and Caguor Adong Manyang. 2009. Luanyjang Dinka. *Journal of the International Phonetic Association* 39:113–124.
- Rose, Suzanne. 1981. Kyuquot grammar. Doctoral dissertation, University of Victoria.
- Stonham, John T.2007. Nuuchahnulth double reduplication and Stratal Optimality Theory. *The Canadian Journal of Linguistics* 52:105–130.
- Trommer, Jochen. 2011. Phonological aspects of Western Nilotic mutation morphology. Habilitation thesis, University of Leipzig.
- Trommer, Jochen. 2015. Moraic affixes and morphological colors in Dinka. *Linguistic Inquiry* 46:77–112.
- Uchihara, Hiroto, and Juana Mendoza Ruiz. 2021. Minimality, maximality and perfect prosodic word in Alcozauca Mixtec. *Natural Language & Linguistic Theory* 40:599–649.
- van Urk, Coppe, and Zhouyi Sun. 2021. Dinka number morphology is regular and concatenative.

Talk at NELS52, Rutgers University.

- Zaleska, Joanna. 2020. Coalescence as autosegmental spreading and delinking. *Phonology* 37:697–735.
- Zimmermann, Eva. 2021. Two is too much... in the phonology! *The Linguistic Review* 38:537–572.

Appendix: Implementing a -(C)V template for affixes

How do we model the -CV restriction on suffixes?

- \triangleright On the -(C)V shape.
 - The onset requirement of roots is evidence for high-ranking ONSET. In suffixes, the onset C is already provided by the obligatory coda consonant of the root.⁹
 - We attribute the absence of codas to NoCoda. Roots must be exempted from this effect, perhaps by McCarthy and Prince's (1990) FINALC (see also Gafos 1998).
 - The absence of long or overlong vowels is attributable to a constraint on long vowels at the end of the word, $*\mu\mu\#$. A similar restriction is active in Nuer (Reid 2020).

▷ Little stacking.

A number of authors have related **word maximality effects to metrical structure** (de Lacy 2003; Ketner 2006; Uchihara and Mendoza Ruiz 2021). The combination of maximal root and affix template are reminiscent of a **disyllabic foot**.

To enforce this maximum, we propose **two constraints on foot shape**: i) a (categorical) constraint forcing right-aligned feet (Uchihara and Mendoza Ruiz 2021), and ii) a constraint anchoring the root to a foot boundary.

(12) ALIGN-R(FT,WD): A foot should be right-aligned with the word edge. ALIGN-L(ROOT,FT): The root should be left-aligned with a foot.

Taken together, these constraints ensure that a prosodic word ideally consists of one foot, anchored by the root. $^{10}\,$

 \Rightarrow Suffixes come in all shapes that fit the CV maximum determined by independent constraints (-C, -V, and -CV). Non-concatenative morphology results from surface phonological conditions and how Dinka prefers to resolve violations of them.

⁹In support of this, notice that some auxiliaries lacking a coda, such as the perfect auxiliary $c\dot{e}$ or the sequentive $g\dot{o}o$ insert a consonant before a -V suffix (e.g. $c\hat{l}i\boldsymbol{n}\cdot\dot{e}$ 'PRF-PASS.CT' and $g\dot{o}or\cdot\dot{e}$ 'SEQ-PASS.CT', Andersen 2007). But there are other functional items without onsets, such as the nominal prefix *a*- or the general purpose preposition \dot{e} . So it is also possible that ONSET applies to roots only.

¹⁰Of course, we also need constraints that enforce the root template.

Appendix B: Multiple affixation and mora coalescence

Why do verbs appear to be restricted to at most one Grade 2 or Grade 3 affix?

- ▷ We can see in Table 6 that most of what Andersen (1993) and Trommer (2011) call the "derivational" morphology (centrifugal, centripetal, applicative, and applicative antipassive) is usually marked by Grade 2.¹¹
- ▷ When we combine a Grade 2 derivational category with one of the "inflectional" categories marked by a vowel grade (e.g. NTS, 1SG, 3SG), we only get one degree of lengthening.

Proposal: We adopt a constraint that penalizes lengthening a short root to overlong, building on the intuition that this type of overlengthening is too great a change.

(13) MATCH-LENGTH: Assign a violation mark if the length of a syllable input differs by more than one degree in the output.

This constraint will allow lengthening of a short root to long and a long root to overlong, but prevents multiple lengthening.

Problem: If this constraint is highly-ranked, we should see a preference for overt affixation return (because $M_{AX\mu} >> *\mu \#$ blocks reduction).

Why are overt Grade 2/3 affixes avoided in multiple affixation?

- ▷ We want to draw an analogy with work on multiple reduplication avoidance (Stonham 2007; Zimmermann 2021).
- ▷ In some reduplicating languages, such as Nuu-chah-nulth, **only one reduplicating morpheme surfaces** in contexts with multiple triggers of reduplication (the underlined suffixes):
 - (14) **m'aa**-m'aal-<u>?as-ap</u> RED-cold-at.wrist-really 'S/he has really cold wrists.'

(Nuu-chah-nulth; Rose 1981:341)

- ▷ Zimmermann argues that the abstract prosodic material associated with reduplicating morpheme can undergo **prosodic coalescence**, in violation of the constraint UNIFORMITY, which regulates the one-to-one correspondence of input and output elements.
 - (15) UNIFORMITYH: Assign a violation mark for every input mora that does not map to a unique output mora.

 \Rightarrow We suggest that a similar repair is at work in multiple affixation. Multiple grade affixes will generate multiple moras that incorporate into the root, but these undergo **mora coalescence**. The ranking * μ # >> UNIFORMITY μ ensures a preference for coalescence over overt affixation:

The bimoraic template in the applicative

▷ As discussed by Andersen (1992), Flack (2007), and Trommer (2015), the applicative imposes a bimoraic template and blocks lengthening of long roots to overlong:

(16)	Bimoraic template in applicative:					
	Unmarked form	Unmarked applicative	Meaning			
	wèc	wéec	'kick'			
	nàj	nệɛj	'plait'			
	còol	cậol	'call'			
	ŋàan	<u> </u>	'open'			
	(Agar Dinka: Anders	sen 2017:14)	-			

- ▷ We follow Flack (2007) in assuming that the applicative is associated with an indexed markedness constraint penalizing overlong vowels.
- ▷ This markedness constraint will play the same role as MATCH-LENGTH in limiting mora incorporation, leading to mora coalescence instead of overt affixation.

¹¹There are two systematic cases where Grade 2 is not observed when there is no Grade 2/3 in the simple paradigm, which is that the NF and 2sG forms are often marked by Grade 3.